Towards an (un) Natural Weak Scale

Josh Ruderman
UC Berkeley & LBNL
Bay Area Seminar, 10/4

Michal Czakon, Alexander Mitov, Michele Papucci, JTR, Andreas Weiler, to appear.

Lawrence Hall, David Pinner, JTR, to appear.

$m_h \approx 125 \text{ GeV}$

+ no obvious BSM below ~I TeV

missing top partner?

multiverse? (landscape?)

this talk:

part I: closing the light stop window (stealth stop)

part II: the weak scale from BBN

1. killing the stealth stop

Michal Czakon, Alexander Mitov, Michele Papucci, JTR, Andreas Weiler, to appear.

state of stops

stealth stop

$$\frac{\sigma_{\tilde{t}\tilde{t}^*}}{\sigma_{t\bar{t}}}(m_{\tilde{t}} = m_t) \approx 0.15$$

$$m_{LSP} \approx 0$$

JiJi Fan, Matt Reece, JTR, 1105.5135

stealth stop

$$m_{\tilde{t}_R} \approx m_t$$

 $m_{LSP} \approx 0$ -----

Han, Katz, Krohn, Reece 1205.5808

where is SUSY?

 we usually look for SUSY by separating signal from background (MET/HT tails, ...)

instead, what about using precision SM measurements?

7 TeV

 σ

$$\sigma_{t\bar{t}} \approx 172 \text{ pb}$$

$$\sigma_{\tilde{t}\tilde{t}^*}(m_{\tilde{t}}=m_t)\approx 26 \text{ pb}$$

theory error

NLO:

 $\delta \sigma_{\rm th} \approx 20 \ \rm pb$

experimental error

$$\delta \sigma_{\rm exp} \approx 7 \ {\rm pb}$$

7 TeV

The total top quark pair production cross-section at hadron colliders through $\mathcal{O}(\alpha_S^4)$

Alexander Mitov Theory Division, CERN, CH-1211 Geneva 23, Switzerland (Dated: March 26, 2013)

theory error

NLO:

$$\delta \sigma_{\rm th} \approx 20 \text{ pb}$$
 NNLO+NNLL $\sigma_{t\bar{t}} = 172^{+4.4}_{-5.8} ({\rm scale})^{+4.7}_{-4.8} ({\rm pdf}) \text{ pb}$

experimental error

$$\delta \sigma_{\rm exp} \approx 7 \ \rm pb$$

7 TeV

 σ

$$\sigma_{t\bar{t}} \approx 172 \text{ pb}$$

$$\sigma_{\tilde{t}\tilde{t}^*}(m_{\tilde{t}}=m_t)\approx 26 \text{ pb}$$

theory error

NLO:

 $\delta \sigma_{\rm th} \approx 20 \ \rm pb$

NNLO:

 $\delta \sigma_{\rm th} \approx 8 \ \rm pb$

experimental error

$$\delta \sigma_{\rm exp} \approx 7 \ {\rm pb}$$

stop + top

CMS dilepton @7TeV:

stop + top

CMS dilepton @7TeV:

stop + top

varying the top mass:

LHC top mass (5/fb)

 $173.3 \pm 0.5 \pm 1.3 \text{ GeV}$

what is mt in the presence of stop contamination?

2. the weak scale from BBN

Lawrence Hall, David Pinner, JTR, to appear.

dangers of a variable weak scale

$$m_u = y_u \, v$$
 $m_d = y_d \, v$ hydrogen unstable complex nuclei unbound v 0 v 100 GeV \sim 400 GeV v 100 v 10 v 100 v 10 v 100 v 10 v 100 v 10 v 100 v 100 v 100 v 10 v

- Agrawal, Barr, Donoghue, Seckel 9707380
- Damour, Donoghue 0712.2968

minimal landscape

assume only dimensionful parameters scan:

Arkani-Hamed, Dimopoulos, Kachru 0501082

general landscape

scan:

 (y_u, y_d, v)

runaway to large v?

scan:

 (y_u, y_d, v)

nuclear physics depends on the quark masses

runaway: increase v, fixing quark masses,

$$y_{u,d} o rac{m_{u,d}}{v}$$

"Weakless Universe," Harnik, Kribs, Perez 0604027

weak-scale physics in our Universe

I. BBN

$$p + \bar{\nu}_e \rightarrow n + e^+$$

2. pp chain in stars

$$p+p \rightarrow d+e^++\nu_e$$

3. supernovae

$$e^- + e^+ \rightarrow \nu + \bar{\nu}$$

 $\bar{\nu} + p \rightarrow n + e^+$

BBN

BBN and He4

$$p + \bar{\nu}_e \longleftrightarrow n + e^+$$

decouples: $T_{\rm fr} \sim \frac{v^{4/3}}{M_n^{1/3}} \approx 1 \ {
m MeV}$

$$\frac{n}{p} = e^{-(m_N - m_P)/T_{\rm fr}} \qquad m_N - m_P \approx 1.3 \text{ MeV}$$

$$Y_4 \approx \frac{2(n/p)}{1 + n/p} \approx 0.25$$

BBN and He4

$$(m_N - m_P)^3 M_p \sim v^4$$

dangers of a helium universe

primordial hydrogen is important for:

- galactic halo cooling
- stars powered by pp chain
- water

quantifying how much hydrogen is needed for observers we leave for future work...

BBN and the weak scale

(technical aside)

$$\delta M_{p-n}^{\gamma} = M_p - M_n - \delta M_{p-n}^{m_d - m_u} = 1.20(12) \text{ MeV}$$
 [AWL, C.Carlson, G.Miller PRL 108 (2012) $1.40(03)(47) \text{ MeV}$]

from Andre Walker-Loud, Lattice 2013

• in a multiverse where (y_u,y_d,v) scan, all three parameters are bounded by requiring stable Hydrogen, complex nuclei, and not too much Helium from BBN

but what if other parameters scan too?

varying the baryon density

varying the baryon density

if DM is a WIMP,

$$\sigma \propto \frac{1}{v^2}$$

close encounters and disk fragmentation:

Tegmark, Aguirre, Rees, Wilczek 0511774

take away

the stealth stop
 window can be probed
 using the top σ and mass

2. BBN may determine the weak-scale in the multiverse

natural or tuned? 13 TeV awaits!